
CENG3430 Rapid Prototyping of Digital Systems

Lecture 04:

Finite State Machine

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Recall: Comb. vs. Seq. Circuits (Lec03)

• Combinational Circuit: no memory

– Outputs depend on the present inputs only.

– Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

– Outputs depend on present inputs and previous outputs.

– Rule: MUST use sequential statements (i.e., process) .

CENG3430 Lec04: Finite State Machine 2021-22 T2 2

Sequential Circuit

Combinational

Circuit

Memory

(e.g., Latch, FF)

Inputs Outputs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity DFF_ASYNC is
port(D, CLK, RESET: in std_logic;

Q: out std_logic);
end DFF_ASYNC;
architecture DFF_ASYNC_ARCH of DFF_ASYNC is
begin
process(CLK, RESET) -- sensitivity list
begin
if (RESET = '1') then
Q <= '0'; -- Reset Q anytime

elsif CLK = '1' and CLK'event then
Q <= D; -- Q follows input D

end if;
end process;

end DFF_ASYNC_ARCH;

Recall: SIPO Shift Register (Lab03)

CENG3430 Lec04: Finite State Machine 2021-22 T2 3

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SIPO_ASYNC is
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC_VECTOR(3 downto 0));
end SIPO_ASYNC;
architecture SIPO_ASYNC_ARCH of SIPO_ASYNC is
component DFF_ASYNC is
port(D, clk, reset : in STD_LOGIC;

Q : out STD_LOGIC);
end component;
signal dout : STD_LOGIC_VECTOR(3 downto 0);
begin
DFF0: DFF_ASYNC port map

(D, CLK, RST, dout(0));
DFF1: DFF_ASYNC port map

(dout(0), CLK, RST, dout(1));
DFF2: DFF_ASYNC port map

(dout(1), CLK, RST, dout(2));
DFF3: DFF_ASYNC port map

(dout(2), CLK, RST, dout(3));
Q <= dout;

end SIPO_ASYNC_ARCH;

Can we model a sequential circuit in a more “abstract” way?

Recall: SIPO Shift Register (Lab03)

• Bind the I/O ports and physical pins as following:

– Input: clk=SW7, reset=SW6, D=SW0

– Output: Q0~Q3=LD0~LD3

CENG3430 Lec04: Finite State Machine 2021-22 T2 4

Q(3) Q(2) Q(1) Q(0)

clk reset D

How to use a “real” clock?

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 5

• Finite State Machine (FSM) is an abstract model of

a sequential circuit that jumps from one state to

another within a finite pool of states.

• Real-life Example of FSM: Traffic light

• Two crucial factors of FSM:

 time controlling and  state maintenance

Finite State Machine (FSM)

CENG3430 Lec04: Finite State Machine 2021-22 T2 6

 Time Controlling

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Finite State Machine 2021-22 T2 7

CENG3430 Lec04: Finite State Machine 2021-22 T2

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 8

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec04: Finite State Machine 2021-22 T2 9

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Use “if” statement for both sync. and async. processes!

CLK'event vs. rising_edge(CLK) (1/2)

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Finite State Machine 2021-22 T2 10

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec04: Finite State Machine 2021-22 T2 11

CLK'event vs. rising_edge(CLK) (2/2)

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising/falling_edge() with “if” statement!

 State Maintenance

• Method 1: Use memory device(s) (e.g., FF)

• Method 2: Form feedback path(s) in a clocked

process (i.e., a process triggered by a clock)

CENG3430 Lec04: Finite State Machine 2021-22 T2 12

Sequential Circuit

Combinational

Circuit

Inputs Outputs

Feedback Path

(e.g., s <= … s …;)

Sequential Circuit

Combinational

Circuit

Memory

(e.g., Latch, FF)

Inputs Outputs

More abstract

& convenient!

 State Maintenance

13

entity Method_1 is -- use D-FF
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC);
end Method_1;
architecture Arch of Method_1 is
component DFF_ASYNC is
port(D, clk, reset : in STD_LOGIC;

Q : out STD_LOGIC);
end component;
signal din, dout: STD_LOGIC;
begin
din <= not (D and dout);
DFF_ASYNC port map(din,CLK,RST,dout);
Q <= dout; -- output

end Arch;

entity Method_2 is -- form feedback path
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC);
end Method_2;
architecture Arch of Method_2 is
signal s: STD_LOGIC; -- state
begin
process(CLK, RST) begin
if (RST = '1') then
s <= '0'; -- Async. reset s

elsif rising_edge(CLK) then
s <= not (D and s); -- feedback

end if;
end process; -- clocked process
Q <= s; -- output

end Arch;

CENG3430 Lec04: Finite State Machine 2021-22 T2

D Q

CLK

D Q

RST

din dout
Signal s (i.e., state) forms a feedback

path in a clocked process!
• s holds for one clock cycle.

• not(D and s) takes effect at the next edge.

• <= here can be treated as a flip-flop!

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 14

FSM Types

Example: An FSM that outputs a ‘0’ (resp. to ‘1’)

if an even (resp. to odd) number of 1’s have been received.
CENG3430 Lec04: Finite State Machine 2021-22 T2 15

Even

Odd

Reset

1/0 1/1

0/1

0/0

state

/

input

/

output

Even

0

Odd

1

Reset

1 1

0

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

• Moore Machine:

– Outputs rely on the

present state only.

• Mealy Machine:

– Outputs rely on both the

present state and inputs.

Combinational Logic

Sequential Logic

Moore Machine

• Moore Machine: Outputs rely on present state only.

CENG3430 Lec04: Finite State Machine 2021-22 T2 16

architecture moore_arch of fsm is
signal s: std_logic; -- internal state
begin
process (s)
begin
OUTX <= s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= INX xor s; -- feedback

end if;
end process;

end moore_arch;

Combinational Logic

Sequential Logic

Mealy Machine

• Mealy Machine: Outputs rely on both state and inputs.

CENG3430 Lec04: Finite State Machine 2021-22 T2 17

architecture mealy_arch of fsm is
signal s: std_logic; -- internal state
begin
process (s, INX)
begin
OUTX <= INX xor s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= INX xor s; -- feedback

end if;
end process;

end mealy_arch;

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 18

Rule of Thumb: FSM Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec04: Finite State Machine 2021-22 T2 19

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 20

Sequential

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2

Combinational Logic

21

• Up/Down Counter: Generates a sequence of

up/down counting patterns.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: std_logic_vector(3 downto
0)) := “0000”; -- state

begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= std_logic_vector(
unsigned(s)+1); -- feedback

end if;
end if;

end process;

COUNT <= s; -- Moore Machine

end counter_arch;

FSM Example 1) Up/Down Counter (1/3)

use IEEE.Numeric_Std.ALL;
signal s: std_logic_vector(3 downto 0)) := “0000”; -- state
s <= std_logic_vector(unsigned(s)+1); -- feedback

• A std_logic_vector is merely a collection of std_logic.

– The individual positions have no predefined meaning.

• The IEEE NUMERIC_STD package includes

overloading functions for data types that are more

convenient to use.

– Such as unsigned/signed types and integer type.

• VHDL is a strongly-typed language.

– Signals of different types CANNOT be assigned to each

other without using type casting/conversion.

CENG3430 Lec04: Finite State Machine 2021-22 T2 22

FSM Example 1) Up/Down Counter (2/3)

FSM Example 1) Up/Down Counter (3/3)

CENG3430 Lec04: Finite State Machine 2021-22 T2 23

Type

Casting

Type

Conversion

https://www.bitweenie.com/listings/

vhdl-type-conversion/

Remember to “use IEEE.Numeric_Std.ALL”!

Sequential

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2

Combinational Logic

24

• Complete the counter FSM by filling in the missing

line if the state is declared as an unsigned type:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: unsigned(3 downto 0) :=
“0000”; -- state

begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= s + 1; -- feedback

end if;
end if;

end process;

end counter_arch;

Class Exercise 4.1
Student ID:

Name:

Date:

Sequential

Logic

Combinational Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2 26

• Complete the counter FSM by filling in the missing

line if the state is declared as an integer type:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: integer range 0 to 15

:= 0; -- state
begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= s + 1; -- feedback

end if;
end if;

end process;

end counter_arch;

Class Exercise 4.2
Student ID:

Name:

Date:

Integer Type

• An integer type can be defined with or without

specifying a range.

– If a range is not specified, VHDL allows integers to have a

minimum rage of

−2,147,483,647 𝑡𝑜 2,147,483,647

−(231 − 1) 𝑡𝑜 (231 − 1)

– Or a range can be specified, e.g.,

signal int: integer range 0 to 255;

CENG3430 Lec04: Finite State Machine 2021-22 T2 28

• Pattern Generator: Generates any pattern we want.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK, and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec04: Finite State Machine 2021-22 T2 29

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

FSM Example 2) Pattern Generator (1/2)

Sequential

Logic
Combinational

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2 30

library IEEE;
use IEEE.std_logic_1164.all;
entity pat_gen is port(
RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1
downto 0));
end pat_gen;
architecture arch of pat_gen is
type state_type is (A,B,C,D);
signal s: state_type; -- state
begin
process(CLOCK, RESET)
begin
if RESET = '1' then
s <= A;

elsif rising_edge(CLOCK) then
-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;
process(s)
begin
case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process; -- Moore Machine
end arch;

FSM Example 2) Pattern Generator (2/2)

Enumeration Type

• An enumeration type introduces abstraction into

circuits by allowing users defining a list of values.

– Example:

type colors is (RED, GREEN, BLUE);

signal my_color: colors;

• An enumerated type is ordered.

– The order in which the values are listed in the type

declaration defines their relation:

Each values is greater than the one to the left,

and less than the one to the right.

– Example: a comparison can be:

my_color > RED and my_color < BLUE

CENG3430 Lec04: Finite State Machine 2021-22 T2 31

Class Exercise 4.3

CENG3430 Lec04: Finite State Machine 2021-22 T2 32

Student ID:

Name:

Date:

• Complete the Mealy FSM that

recognizes sequence “10”:

architecture arch of mealy_fsm is
type state_type is (S0, S1);
signal s: std_logic; -- state
begin
process(CLK, RESET) -- seq
begin
if(RESET = '1') then s <= S0;
else
if(rising_edge(CLK)) then
case s is
when S0 =>
if INX = '1' then
s <= S1; -- feedback

else
s <= S0; -- feedback

end if;

when S1 =>
if INX = '0' then
s <= S0; -- feedback

else
s <= S1; -- feedback

end if;
end case;

end if;
end if;

end process;
OUTX <= '1' when(s=__ and INX=__)

else '0'; -- Mealy
end arch;

INX OUTX

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 34

Clock Sources on ZedBoard (1/2)

• Processing System

– PS subsystem uses a dedicated

33.3333 MHz clock source with

series termination.

• IC18, Fox 767-33.333333-12

– PS subsystem can generate up to

four phase-locked loop (PLL)

based clocks for the PL system.

• Programmable Logic

– An on-board 100 MHz oscillator

supplies the PL subsystem clock

input on bank 13, pin Y9.

• IC17, Fox 767-100-136

CENG3430 Lec04: Finite State Machine 2021-22 T2 35

http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

https://www.electronics-tutorials.ws/oscillator/oscillators.html

Clock Sources on ZedBoard (2/2)

• To use the on-board 100 MHz clock input on bank 13,

pin Y9, you need to include the following in your XDC

constraint file:

set_property IOSTANDARD LVCMOS33 [get_ports clk]

set_property PACKAGE_PIN Y9 [get_ports clk]

create_clock -period 10 [get_ports clk]

Note:

• The constraint -period 10 is only used to inform the tool that clock

period is 10 ns (i.e., 100 MHz).

• The constraint -period 10 is NOT used specify or generate a

different clock period from a given clock source.

CENG3430 Lec04: Finite State Machine 2021-22 T2 36

http://zedboard.org/content/changing-frequency-clock-using-createclock

Clock Divider (1/2)

• In practice, we often need clocks of different rates.

• Example: How to create a 1 KHz clock from the on-
board 100 MHz oscillator (clk)?

CENG3430 Lec04: Finite State Machine 2021-22 T2 37

… … ……
100 MHz

Clock

1 second

100 M x

100 M / 1 K = 100,000 x

1 ms

…1 KHz

Clock

1 K x

Clock Divider (2/2)

• Trick: If we make a counter (count) that counts n

cycles, then we can generate a pulse (ms_pulse)

when the counter is at any particular value n.

CENG3430 Lec04: Finite State Machine 2021-22 T2 38

signal ms_pulse: STD_LOGIC:='0';
signal count: integer:=0;
process(clk)
begin
if rising_edge(clk) then
if (count = (50000-1)) then
ms_pulse <= not ms_pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;

…
100 MHz

Clock

1 ms

1 KHz

Clock

100 M / 1 K = 100,000 x

ms_pulse

Class Exercise 4.4

• Complete the code that creates a 50 Hz clock from
the on-board 100 MHz oscillator (clk):

CENG3430 Lec04: Finite State Machine 2021-22 T2 39

Student ID:

Name:

Date:

signal pulse: STD_LOGIC:='0';
signal count: integer:=0;
process(clk)
begin
if rising_edge(clk) then
if (count = (________-1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;

20 ms

…
100 MHz

Clock

50 Hz

Clock

100 M / 50 = 2,000,000 x

pulse

Generating Multi-Clocks (1/2)

• Method 1: Create entity/process for each of clocks

CENG3430 Lec04: Finite State Machine 2021-22 T2 41

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clk_1hz is
port(clk : in std_logic;

clk_out : out std_logic);
end clk_1hz;
architecture arch_clk_1hz of clk_1hz is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (50000000 - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clk_1hz;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clk_4hz is
port(clk : in std_logic;

clk_out : out std_logic);
end clk_4hz;
architecture arch_clk_4hz of clk_4hz is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (12500000 - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clk_4hz;

Drawback: Most of the codes are redundant!

Generating Multi-Clocks (2/2)

• Method 2: Use generic

CENG3430 Lec04: Finite State Machine 2021-22 T2 42

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity generic_ex is
port(clk : in std_logic);

end generic_ex;
architecture arch_generic_ex of generic_ex is
signal clk_1, clk_4 : std_logic;
component clock_divider is
generic (N : integer);
port(clk : in std_logic;

clk_out : out std_logic);
end component;

begin
clk_1hz: clock_divider

generic map (N => 50000000)
port map(clk, clk_1);
-- instantiation

clk_4hz: clock_divider
generic map(N => 12500000)
port map(clk, clk_4);
-- instantiation

end arch_generic_ex;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clock_divider is
generic (N : integer);
port(clk : in std_logic;

clk_out : out std_logic);
end clock_divider;
architecture arch_clock_divider of
clock_divider is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (N - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clock_divider;

generic: Key to Parameterized Entity

• In VHDL, you can create a “parameterized entity” by

including a generic clause that lists all supported

parameters (i.e., generics) in the entity declaration.

generic (PARA_NAME: <type> [:= <value>]);

– Note: Default values are optional for generics and can be

given in the entity declaration or the component declaration.

• You can then instantiate a parameterized entity with a

component instantiation statement in a similar way as

instantiating an unparameterized entity.

– Generics can be set (via generic map) in the instantiation.

generic map (PARA_NAME => <value>)

CENG3430 Lec04: Finite State Machine 2021-22 T2 43

Summary

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 44

